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A cellular-automaton-like caricature of chemical turbulence on an infinite 
one-dimensional lattice is studied. The model exhibits apparently "turbulent" 
space-time patterns. To make this statement precise, the following problems or 
points are discussed: (1)The infinite-system-size limit of such cell-dynamical 
systems and its observability is defined. (2) It is proved that the invariant state 
in the large-system-size limit of the "turbulent" phase exhibits spatial patterns 
governed by a Gibbs random field. (3) Potential characteristics of "turbulent" 
space-time patterns are critically surveyed and a working definition of (weak) 
turbulence is proposed. (4)It is proved that the invariant state of the 
'turbulent" phase is actually (weak) turbulent. Furthermore, we conjecture that 
the turbulent phase of our model is an example of a K system that is not Ber- 
noulli. 
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1. I N T R O D U C T I O N  

M a n y  systems with interes t ing p h e n o m e n a  such as pa t t e rn  format ion ,  
turbulence,  etc., have not  only  t empora l ,  but  spat ia l  structures.  The recent  
revival  of  interest  in the collective behav io r  of coupled  simple subsystems 
such as cel lular  a u t o m a t a  (CA)  (1'2) and  coupled  maps  ( C M )  ~3) stems from 

the quest  for the role of  spa t ia l  degrees of  freedom. 
In the present  p a p e r  we analyze  in detai l  our  car ica ture  mode l  of 

chemical  turbulence,  (4) which is a k ind  of  cel lular  a u t o m a t o n  wi thout  a 
quiescent  state. We  first discuss the infini te-system-size l imit  of cel lular-  
a u t o m a t o n - l i k e  systems and  its empir ica l  accessibi l i ty  (observabi l i ty) ,  and  
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deduce the macroscopic phase diagram for our model from the microscopic 
mechanics (i.e., local rules). Our caricature model exhibits an apparently 
"turbulent" phase, which we call the T-phase. In the T-phase we show that, 
in the infinite-system-size limit, there is a unique observable stationary 
state whose spatial structure is described by a Gibbs random field (e.g., 
Ref. 5). Next, we discuss how to characterize at least weakly turbulent 
space-time patterns and propose a working definition. We then prove that 
the T-phase of our model is actually weakly turbulent. 

The problem of fluid turbulence and the theory of dynamical systems 
were connected by Ruelle and Takens/6) The study of systems with a few 
degrees of freedom has attracted much attention since the enlightening 
paper by McLaughlin and Martin, (v) which popularized the highly original 
paper by Lorenz (s) as well as the work of Ruelle and Takens. Much simpler 
systems, such as maps of an interval to itself, also have attracted 
researchers, especially after the papers by Li and Yorke (9) and May. (1~ So 
far no special attention has been paid to the spatial structure (if any) of 
dynamical systems; even partial differential equations (PDE) have been 
considered as ordinary differential equations in certain function spaces. The 
only exception may be the studies of Liapunov characteristic number den- 
sity, etc., of PDEs by Ruelle and others/H) On the other hand, numerical 
experiments on PDE, coupled maps, and CA have become increasingly 
popular among researchers in physics and other fields. In these studies 
spatial patterns or space-time patterns such as intermittency have been 
considered interesting. (~2) Therefore, the points of view of the ordinary 
theory of dynamical systems and of the main interest of numerical 
experimentalists have been more or less orthogonal. Since one of the most 
interesting problems in the theory of dynamical systems is the study of the 
long-time behavior of the systems, to obtain a dynamical-system-theoretic 
framework of CA, we should study infinitely big lattice systems. Only on 
such a lattice can we unambiguously discuss entropies, the Liapunov 
characteristic numbers, and other dynamical quantities. However, we 
obviously cannot study or observe infinite lattice systems empirically. 
Therefore, strictly speaking, interesting states of infinitely big lattice 
systems are those that we can somehow reach by some limiting procedure 
from observations of finite systems. We will discuss a definition of the 
large-size limit and its observability. 

One of the conceptual issues in the study of maps is the charac- 
terization of chaos. We believe that the issue has been settled. For example, 
one definition due to O o n o  O3) for an endomorphism T: ~ ~ s~ of a set ~ is 
as follows: we say that T exhibits (formal) chaos if and only if there exists, 
for a positive integer m, a T m invariant subset ~ ~ ~, and a one-to-one 
map q~ so that the diagram in Fig. 1 becomes commutative, where 
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Fig. 1. A definition of chaos. D1 is a T'-invariant set of the system T: ~ ~.Q, where m is a 
positive integer and g2t ~ s~, ~ =: {0, 1 } N, the set of all the semi-infinite sequences consisting of 
0 and 1, and cr is the full shift on g2, i.e., a: s ~ ~Q is the coin tossing process. If we find a 
bijection ~ such that this diagram is commutative, we say T: Q ~ f2 exhibits chaos. 

-Q ~- {0, 1 }N (henceforth N denotes the set of all the positive integers) is the 
set of all semi-infinite sequences of 0 and 1 and a is the full shift. In more  
informal words, if we can find a nice relation between a dynamical  system 
and a stochastic process (say, the coin tossing process), we say that the 
system exhibits chaos. The nicety of  this definition has been well 
demonstrated.  ~141 Notice that the definition automatical ly implies the sen- 
sitivity of the system to initial conditions stressed by Guckenheimer  (151 and 
others. The relation of  this definition to algorithmic randomness  (~6~ is 
obvious, and has been noted and stressed. 2 Simultaneously, Ford  (17) also 
advocated a similar definition of chaos. Brudno 's  celebrated theorem (~8~ 
relating the algori thmic complexity of trajectories and the K o l m o g o r o v -  
Sinai ent ropy is the theoretical basis of  our  point  of view. On the other  
hand, the concept  "turbulence" should be more  specific than chaos. "Tur-  
bulent" dynamical  systems must  be chaotic, but  the converse should not 
hold: who would call a spatially homogeneous  but temporal ly chaotic 
system a turbulent system? Thus, in order  to characterize "turbulence," we 
must  respect spatial patterns exhibited by the system. As far as we know 
there have been no serious at tempts in this direction except for preliminary 
analyses by Wolf ram (~9) and Packard.  ~2~ 

We believe that  the essence of  turbulent  space-time patterns lies in the 

2 y. Oono and Y. Takahashi, invited talks in Japan at various meetings on chaos, 1979. 
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incompatibility between two choices of partitionings of the state space AL; 
one is a partition based on the visual similarity of spatial patterns and the 
other is the partition generated by a generator of dynamics (or more 
intuitively, based on similarity of fates of patterns). If these two choices are 
incompatible, each component of one partition overlaps many components 
of the other. In this paper we try to quantify this incompatibility, and give 
a working definition of weak turbulence. We, however, hesitate to call any 
pattern produced by CA turbulent in the genuine sense, because, as we will 
see, the Kolmogorov-Sinai entropy for the observable (i.e., empirically 
accessible) measure is finite even in the infinite-lattice-size system. 
Therefore we introduce a weaker concept to discuss apparently com- 
plicated patterns. 

We occasionally pay attention to coupled maps also. It is convenient 
to define a class of dynamical systems which includes both CA and CM: 
cell dynamical systems (CDS). A CDS is an endomorphism T: AL--* A L, 
where A is a set and L is a lattice (in the physicists' sense, e,g., d-cubic lat- 
tice Z a, Z being the set of all integers, as usual). The present paper should 
be regarded as part of a more general study of CDS. 

There are two main aims in the general study of CDS: [A] to study 
CDS as models of nonequilibrium phenomena; [B] to use CDS to under- 
stand fundamental conceptual issues. Aim [A] consists of [Aa] construc- 
tion of simple but nontrivial models of real phenomena such as fluid tur- 
bulence and lAb] use of resultant models to explore principles of non- 
equilibrium statistical physics. Aim [B] consists of [Ba] construction of a 
theoretical framework for dynamical systems that have nontrivial space- 
time structures, and [Bb] use of CDS to understand conceptual questions 
such as, "What is the randomness of space-time patterns?" There are 
many studies in [Aa]; typical examples are cellular automaton 
hydrodynamics (21) and coupled-map models of spinodal decomposition. (22) 
However, there seems to be no study in the category lAb]. This will 
include the application of thermodynamic framework for chaos( 5'231 to 
CDS. Dynamical-system-theoretic studies of CA are not new. There exist 
ergodic theoretical studies (24'25~ for restricted classes of CA. However, even 
very fundamental questions have yet to be discussed. For example, the 
large-system-size limit (the counterpart of the thermodynamic limit in 
ordinary equilibrium statistical mechanics) of CDS has not been con- 
sidered. Preliminary studies (19'2~ exist in the category [Bb]. 

Since the present paper is rather lengthy, we here give a roadmap and 
the main conclusions of each section. We use Walters (26) as the standard 
source of definitions of mathematical terminology thoughout the paper. 

In Section 2 chemical turbulence is explained. This section summarizes 
theoretical and experimental background. An empirically obtained phase 
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diagram for the Belousov-Zhabotinsky reaction is reproduced here for 
convenience. 

In Section 3 chemical turbulence is modeled as a CA that does not 
have a quiescent phase, and empirical results obtained from simulations are 
summarized. We show that there are three nontrivial phases T, S~, and Sb; 
T is the "turbulent" phase, and Sa, Sb are phases with solitons (or kinks). 

In Section 4 the "thermodynamic limit" (large-lattice-size limit) of CA 
and its observability is defined. All the technical details are given in the 
Appendix. With this preparation we can safely and meaningfully talk about 
entropies of the CA, which are obtainable from the observation of finite 
systems. Simple examples that will be used later as counterexamples are 
briefly discussed. 

Sections 5 and 6 discuss the nontrivial phases (stationary states) of our 
chemical turbulence model. In Section 5 observed macroscopic behaviors 
on finite lattices are rigorously deduced from the microscopic dynamics 
(i.e., the local CA rules). In Section 6 the infinite-system-size limit of these 
phases are discussed. In this limit the phases S~ and Sb are shown to be 
spatially homogeneous and the T-phase exhibits an observable stationary 
state characterized by a Gibbs random field. Since a large part of these two 
sections is highly technical, each section starts with an outline and a sum- 
mary, so that the reader can skip the technical details completely without 
much difficulty in following the rest of the discussion. 

In Section 7 we survey possible characterizations of turbulent space- 
time patterns. We conclude that entropies, complexity, etc., are not 
adequate characteristics of "turbulence." 

Then in Section 8 we propose a definition of "weak turbulence" and 
prove that the T-phase of our model is actually weak-turbulent. We also 
show that the one-dimensional game of life (25) is weakly turbulent. 
Section 9 is a summary. 

2. C H E M I C A L  T U R B U L E N C E  

Kuramoto,(27) Koppel,(28) and other researchers have been conducting 
extensive and systematic studies of coupled (stable) limit cycles for more 
than 10 years. One of the most important outcomes is the concept of 
chemical turbulence. (29)'3 

Usually, we start from an ordinary differential equation which has a 
unique globally stable limit cycle: 

d 
dt tp(t) = f 0 P ( t ) )  (2.1) 

3 This should not be confused with so-called chemical chaos, which does not include spatial 
randomness at all. 
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where ~ is a vector-valued function of time, and f defines a flow field. 
Without any loss of generality, we may assume that ~ is a 2-vector. We 
suppose that at each point there is a nonlinear oscillator described by (2.1), 
and that they are diffusively coupled as 

8t ~(r, t) = f(~(r,  t)) + D A~(r,  t) (2.2) 

Applying the reductive perturbation method to this equation with the 
stability argument, Kuramoto derived the following equation, now called 
the Kuramoto-Sivashinsky equation{27'29'3~ 

a,~,  + J r  + j 2 r  _ ( v ~ ) 2  = o (2.3) 

Yamada and Kuramoto {29) showed numerically that the Kuramoto 
Sivashinsky equation exhibits turbulent space-time patterns. 

Following the Kuramoto-Yamada prediction, Yamazaki eta/.  (31) per- 
formed an experimental study of chemical turbulence, using the Belousov- 
Zhabotinsky reaction. (32) To satisfy the condition for (2.1), they chose the 
regime of the reaction where there were only purely periodic oscillations 
when the solution was stirred well; that is, without spatial coupling, the 
system exhibited only a globally stable limit cycle behavior. Thus, if a 
chaotic phenomenon was observed in a vessel without any hydrodynamic 
disturbance, it was solely due to the existence of the spatial inhomogeneity. 
Actually, eliminating all the hydrodynamic disturbances required extremely 
careful experiments in contrast to the relatively easy stirred reactor 
experiments required in the study of chemical chaos. The Belousov- 
Zhabotinsky reaction is exothermic, and generates carbon dioxide. To 
prevent any convection due to the exothermicity of the reaction, the reac- 
tion vessel (50-ml beaker) had to be cooled slightly from below to eliminate 
Benard convection (a temperature difference of about 0.5 K was needed). 
Carbon dioxide bubbles had to be kept on the wall of the vessel by coating 
it with a fresh natural rubber film for each run and any run with one bub- 
ble coming up had to be aborted (hence, the reaction vessel had to be 
watched carefully throughout each run and the successful runs were less 
than 50% of all runs). The flow induced by adding reagents at the 
beginning of each run had to be damped as soon as possible by a 
damper (experiments in thin layers of solution can avoid hydrodynamic 
disturbances, but then bubbles can disrupt the single-connectedness of the 
space). 

In the experiments by Yamazaki et al. malonic acid was oxidized by 
bromate ion under the existence of a catalyst, ferroin. The free energy 
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liberated by the oxidation of malonic acid makes ferroin oscillate between 
two oxidation states; the color of the reduced state is red, and that of the 
oxidized state is blue. The oscillation was observed as the electromotive 
force of a suitably constructed cell. The experimental results are sum- 
marized in Fig. 2. Both parameters, ~, the ratio of molarities, and 6~, the 
temperature, control the effectiveness of the diffusion. Specifically, with 
increasing temperature, the frequency of the reaction increases and the 
effectiveness of the diffusion decreases. From Fig. 2 we may conclude that 
there are at least two phases, ordered and not ordered. In the former phase 
well-defined patterns like scrolls were observed in the reaction vessel, but in 
the latter phase, only nebulous patterns could be seen. The transition 
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Fig. 2. The phase diagram of a chemical turbulence system. ~3~ 0 is the solution temperature 
and ~ is the ratio of molarities, ~ = [KBrO3]/[malonic  acid]. (O)  Disordered; ( �9  ordered; 
( ~ )  intermediate states according to the order parameter introduced in Ref. 31. The three cur- 
ves below the diagram are samples of actual emf signals of the cell for A, B, and C points. 
Other figures describe the voltage spectra of representative points on the phase diagram. 
There are sharply peaked spectra away from the region circled by a dashed curve. Inside the 
region the peaks are relatively broad. Although the transition between ordered and disordered 
seems continuous, there is a fairly well-defined region of the disordered phase. 
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between these two phases seemed to be continuous. For more details refer 
to the original report. ~ The observed results are in rough conformity to 
the following general theoretical results: (1) If the diffusion constant is too 
small or too large, there is no chemical turbulence; (2) if the degree of the 
spatial inhomogeneity is too large, then amplitude turbulence occurs~ 
i.e., random modulation of the envelope curve of the signal appears; 
(3) finite-dimensional caricatures of (2.2) (33) exhibit chaotic phases charac- 
terized by temporal alternation of oscillatory behavior and transient 
disorder behavior (intermittency). 

3. CDS M O D E L S  OF C H E M I C A L  T U R B U L E N C E  

3.1. Construct ion of  Models  

We construct our model of chemical turbulence in two steps. First, we 
construct a dynamical model of a single isolated cell. We suppose that the 
dynamics of the cell is identical to that of the completely stirred isolated 
system. Next, we couple these cells via linear diffusion. 

As is discussed in the preceding section, the essence of chemical tur- 
bulence is the linear coupling of orbitally stable limit cycles. Hence the 
single cell dynamics must be the one with a globally stable limit cycle. The 
easiest way to mimic this is to use cyclically arranged discrete concen- 
tration levels. The state of an isolated cell itinerate these states periodically. 
Thus, in general, the single-cell discrete dynamics can be expressed as 

0(n, t +  1)= F0p(n, t)) (3.1) 

where tp(n, t) is the concentration in the nth cell at time t, and the map F is 
a cyclic permutation (i.e., an ergodic automorphism) of a finite set A of dis- 
crete concentration levels. The linear coupling is mimicked by the following 
local weighted average (in 1-space): 

tp(n,t+l)=(1-~)tp(n,t)+~[O(n-l,t)+O(n+l,t)]/2 (3.2) 

where e e [0, 1] may be regarded as the diffusion constant. Thus, the 
overall dynamics of our cell model is given by 

ff'(n, t) = (1 - c~) ~9(n, t) + e[Ip(n - 1, t) + O(n + 1, 03/2 (3.3) 

and 

O(n, t+  1)--F({O'(n, 0}) (3.4) 

where {,} denotes some prescription to assign an element in A to ,. 
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Roughly speaking, the dynamics describes the repeated readjustments of 
the internal clock of each cell to the averaged time of its neighborhood 
cells. 

The simplest choice of A would be a two-symbol set. We can choose 0 
and M for the two concentration levels without any loss of generality, 
where M is a number greater than 0.5. Now F is given by 

F(O) = M, F(M) = 0 (3.5) 

and the { } is defined as 

M if 0.5 ~>x (3.6) 
{x}= if x > 0 . 5  

Depending on the values ~ and M, the model becomes identical to various 
two-state CA (01-CA), as is summarized in the phase diagram (Fig. 3). 
None of these CA gives nontrivial stationary patterns. 

The next simplest choice for the set A is the three-symbol set. For 

1 
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Fig. 3. The phase diagram for the 0M model with the corresponding 01-CA rule numbers. (~ 
Here e is the diffusive coupling strength and M is the peak value of the autonomous 
oscillation. 
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simplicity, A is chosen as {0, 1, M},  where M is a number  larger than 1.5. 
N o w  F and { } are defined as follows: 

l l if 1.5~<x 

F ( { x } ) =  0 if 0 .5~<x<1 .5  (3.7) 

M if x < 0 . 5  

The nicety of the present model  was stressed by K o h m o t o  ~4/ in the early 
stage of the present study. As we will see soon, the model  can exhibit non- 
trivial phases, in contrast  to the two-state model. We have also studied an 
analogous model  with A = {0, 1, 2, M},  where M is a number  greater than 
2.5, and have found richer dynamical  behavior. However,  the three-level 
model is sufficiently rich for the purpose of the present paper, so henceforth 
we concentrate  on this model,  which we call the 0M1 model. 

3.2. Experimental  Results on the OM1 Model  

The phase diagram for the 0M1 model  is shown in Fig. 4. Typical 
space-time patterns, autocorrela t ion functions for the single cell states, 

! r 

IL 
~.~'.. 3," ," 

0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 4. The phase diagram for the 0M 1 model. The dashed lines are boundaries of areas with 
the same local rules. The solid line indicate different macroscopic phases. The symbols 3 and 
3' are the two periodic phases with period three, and T and S are the T-phase and the 
S-phase. As in the real experiment, there is a turbulent (T) region at intermediate values of 
diffusion sandwiched between two ordered regions (3 and 3'). The letter X denotes other 
phases not discussed in the text. 
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corresponding power spectra, and spatial correlation functions are shown 
in Fig. 5. Although we specified our dynamics with Eqs. (3.3) and (3.4), we 
could have done the same job by tabulating all the local rules, i.e., the map 
f: A 3 ~ A such that 

f(O(n+ 1, t), O(n, t), 0 ( n -  1, t ) )=  O(n, t +  1) 

as in the ordinary CA. The dotted curves in the phase diagram (Fig. 4) 
denote boundaries for different local rules. We immediatedly realize from 
this phase diagram that different local rules, say, the three sectors in the 
T-phase, can give the same phase (at least apparently). As we will see soon, 
the S-phase is subdivided into S~ and Sb, and within each of the T, S~, and 
S~ phases, effective local rules are identical. By effective local rules we mean 
the local rules actually used in the "stationary" space-time patterns. By the 
word "stationary" we mean the periodic state of a CA on a finite lattice. 
The word will be carefully defined for the case of infinite lattices in the next 
section. Table I shows the local rules and the effective local rules for the 
T- and S-phases. Notice that many different local rules give an identical 
effective rule. These empirical results will be proved in Section 6. 

The periodic phases 3 and 3' are not characterized by unique effective 
rules, but since these phases are not interesting, we will not discuss them 
further. Inspection of Table I shows that the difference between the S-phase 
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Fig.  5a. T y p i c a l  s p a c e - t i m e  p a t t e r n s  o f  the  0 M 1  m o d e l .  (4) T i m e  f lows  f r o m  t o p  to b o t t o m .  

T h e  h o r i z o n t a l  d i r e c t i o n  is t he  spa t i a l  d i r ec t ion .  T h e  e m p t y  cells a c t u a l l y  c o n t a i n  M.  T h e  

T - p h a s e  exh ib i t s  w e a k l y  t u r b u l e n t  s p a c e - t i m e  p a t t e r n s .  I n  t he  i n f i n i t e - sy s t em l imi t  the  S - p h a s e  

w o u l d  l o o k  h o m o g e n e o u s  to  a n y  loca l  o b s e r v e r .  3 a n d  3 '  a r e  t he  t w o  p e r i o d - t h r e e  phases .  

822/48/3 4-16 



604 Oono and Yeung 

and T-phase consists of the presence of the two effective local rules for the 
triplets 101 and MOM. The S-phase lacks all these rules because isolated 
zeros never appear and these local configurations are forbidden. This is 
because, even if such local patterns exist in the initial configurations, they 
disappear due to the efficiency of the diffusive coupling in the S-phase. In 
contrast, the T-phase does not have such an efficient diffusion, so that 
spatial homogeneity does not appear. As we see in Fig. 5c, the time 
correlation function in the T-phase exhibits a kind of long-time tail which 
decays algebraically. This is not surprising, since the 0M1 model and 
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Fig. 5b. The space correlation functions <c(r, t)c(r + R, t)>r,t obtained from simulations on 
a 400-site lattice. In the T-phase (bottom) the correlation decays to zero (within statistical 
error) in fewer than ten sites. In the S-phase the decay is much slower. 
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Niwa's hard rod system, (34) for which the correlation function decays as 
t-1/2, are similar, as we will see in Section 6. 

Our powerful visual pattern recognition ability tells us that the phase 
T is different from other phases; although we recognize some regularity, it 
looks rather random. We would say that the phase is (at least weakly) tur- 
bulent. Thus, we call the phase T (turbulent). We postpone, to Section 8, 
however, answering the question of whether the phase T may be 
reasonably called turbulent. In a preliminary report of this study by Oono 
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and Kohmoto, (4) phases were tentatively characterized by the values of the 
Markov entropies (35) of the spatial and temporal structures. These 
entropies give upper bounds to the sequence entropies, whose definition 
can be found in Section 7. However, in order to calculate, e.g., the 
Kolmogorov-Sinai entropy of a CA, we must use an infinitely large lattice. 
Otherwise, any state of the system obtained in the large-time limit must be 
periodic, so that any dynamical entropy trivially vanishes. In any case, 
since the most important part of the theory of dynamical systems is the 
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study of long-time behavior of dynamical systems, we must study CA on 
infinite lattices. Then we must be careful when we define the stationary 
states of CA, because transient behavior could be infinitely long on infinite 
lattices. Indeed, our phases S and T exhibit such behavior. We will see in 
Section 6 that the true stationary state in the S regime does not contain 
any soliton-like elementary excitations. The S phase reminds us of the 
excitable state of the Belousov-Zhabotinsky system. C36'37) These subtleties 
were not discussed in our preliminary report. The existence of extremely 
long transient behavior has been noted in ordinary CA. (38) We will discuss 
how to define the large-size limit of CA in the next section. After making 
this limit meaningful, we consider this limit in the T- and S-phases. 

4. S T A T I O N A R Y  STATE OF CA 

In the study of ordinary dynamical systems we pay attention primarily 
to their stationary states, or the behavior on their co-limit sets. For  exam- 
ple, to calculate the Liapunov characteristic number (LCN) unam- 
biguously, we require that the system is in an co-limit set. We must note 
that no CA system so far studied numerically has ever been in a nontrivial 
stationary state (here, "nontrivial" means "not periodic"); on computers we 
can study only finite-size lattice systems, so that true stationary states are 
merely periodic states. If one wants to study a CA from the computation- 
theory point of view or to use CA as, for example, an encoder, it may be 
rather silly to study its long-time statistics. Here, however, we study CA as 
models of nonequilibrium statistical physics, so that we must first clarify 
what is meant by the long-time behavior. 

In this section, we define empirically accessible invariant states of CA 
on infinite lattices in a rather abstract setting. Then, we study the invariant 
states of the 0M1 model, showing the uniqueness of the "turbulent" phase 
in Sections 5 and 6. 

4.1. Empirical and Observable Measures 

We consider, for simplicity, the 1D nearest neighbor models with the 
finite cell state A. That is, we consider a CA, T: A z ~ A z defined as 

= {a;}L (4.1) 

with 

a i=f (a i  1,ai, ai_l), for i ~ Z  (4.2) 

where f: A3--* A is a map defining the local rules of CA. For  general CDS 
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we must study all the periodic orbits of finite lattice systems, and can 
proceed similarly for CA. An explicit construction will be postponed for 
future publication. In this subsection we outline how to construct T- 
invariant measure on A z to define measure-theoretic CA. A mathematical 
account can be  found in the Appendix. We summarize the discussions and 
results of the Appendix in the remaining part of this subsection. 

The main motivation behind our construction is as follows. In the case 
of axiom A dynamical systems (39) and endomorphisms of intervals, ~4~ the 
statistical behavior is completely determined by the periodic orbits. This 
situation is quite parallel to that of ordinary statistical mechanics. (s) We 
can take the thermodynamic limit starting from finite systems with periodic 
boundary conditions. In the case of CA we proceed analogously. We take a 
CA on a finite lattice with periodic boundary condition and study all the 
periodic states. Then we take the infinite-lattice-size limit. We show that 
this limit is well-defined. It may seem natural that if the system is 
sufficiently "turbulent," then the limit is unique. We will see this is the case 
for our ]-phase of the 0M1 model. 

We begin by taking the statistics of local configurations (finite-length 
words) around a fixed cell denoted by O, where we suppose that the 
observer is located. The observer cannot see far away nor remember far 
back accurately. Since we can simulate or observe only finite lattice for 
finite time spans, we are much like this observer. 

We proceed as follows. Take a both-side infinite sequence a e A z as an 
initial condition, for which we want to define the stationary states. Then, 
cut out from a the finite subsequence of length N, aN, centered around the 
observer O and make a ring by pasting together the ends of the cutout 
finite sequence. Next, obtain the periodic orbit of this finite periodic lattice 
system with the initial configuration a N under the same local rules 
designated by f We take the statistics of the appearance of all the local 
configurations around the observer (i.e., the spatial patterns occupying 
connected subsets of the lattice centered around the observer; see 
Definition 5 in the Appendix for a more precise description). Thus, we 
make a statistical table of local patterns, which can be regarded as a vector. 
For  each N we can make such tables (vectors). For  each infinite sequence a 
in A z we can make the set of all such tables [which is the set P~ in (A.11) 
of the Appendix] and look for its accumulation points with respect to the 
metric that is in conformity with the limitations of our observer at O. Each 
accumulation point is again a statistical table of local configurations. The 
obtained probabilities for local configurations satisfy the Kolmogorov 
extension theorem. (41) Hence, for each accumulation point we can define a 
T-invariant measure on A z, which we call an empir ical  measure.  Any 
empirical measure is ergodic (but not necessarily mixing). We identify 
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invariant measures and stationary states. As can be guessed from the above 
argument, even with only one a, we need not have a unique invariant 
measure. However, different initial vectors a may give the same invariant 
measure. If we can get an empirical measure # from "many" initial vectors 
a ~ A z, we say that # is observable (see, more precisely, Definition 7 in the 
Appendix). 

An observable invariant measure # constructed as above is experimen- 
tally accessible at least in principle. The triplet ( T , # , A  z) defines a 
measure-theoretic CA. The most important feature of a T-invariant 
measure we constructed is that it is completely determined by spatially 
localized cylinder sets around the observer. There can be many other 
invariant measures, which cannot be specified by these local cylinder sets. 
Although these measures are perfectly admissible in the definition of 
measure-theoretic dynamical systems, we will not consider these 
pathological measures. 

4.2. Elementary Examples 

There are cases without any observable invariant measures (as defined 
in the previous section). The most obvious case is for T being the identity 
map on A z. 

Almost trivial but nonetheless useful examples (as counterexamples) 
follow. 
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E x a m p l e  A .  If  T: A z--,  A z is defined by the local rules such that 

f ( a , b , c ) = c ,  a,b, c E A  (4.3) 

then (T, A z) is called a shift dynamical system. This system has the unique 
observable invariant measure given by v in Definition 7 of the Appendix. 
The measure-theoretic dynamical system (T, v, A z)  is isomorphic to the 
Bernoulli automorphism B(p,..., p),(26) where p =  I /# (A) ,  so this is a 
chaotic dynamical system with the Kolmogorov-Sinai entropy log # (A). A 
typical space-time pattern is shown in Fig. 6a. 

In this example on a lattice of size N, the periodic orbit contains at 
most N points in A N, s o  that it is a very tiny subset of A N for large N. 
Notice that still the invariant measure constructed from this orbit is 
ergodic on A z. 

E x a m p l e  B (Double shift). Consider the 1D, four-state {0, 1, 2, 3} 
nearest neighbor CA whose local ru l e f i s  solely determined by the first and 
the third coordinates as 

f (a ,  b, c) = g(a, c) (4.4) 

where g is given by Table II. In this case the observable invariant measure 
is again unique and given by v. The resultant system (T, v, {0, 1, 2, 3} z) is 
isomorphic to the direct product of two B(1/2, 1/2) systems, so that (42) it is 
isomorphic to B(1/4, 1/4, 1/4, 1/4). The present example is called a double 
shift; the cell state is specified by a two-bit number and f is a left shift on 
the lower bit and a right shift for the higher bit. Hence the system is the 
direct product of two shifts on two symbols. A typical space-time pattern 
for the this model is shown in Fig. 6b. 

Table II. Table for Function g(x, y) 
Used in Examples A and B a 

0 1 2 3 

0 0 1 0 1 
1 0 1 0 1 
2 2 3 2 3 
3 2 3 2 3 

aThe function can be written g(x, y ) = x -  
(x mod 2) + (y rood 2). 
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Example B corresponds to the 1D, infinite ideal gas system, which is 
known to be Bernoulli. The reasons this system (43) is Bernoulli and exam- 
ple B is Bernoulli are parallel: local disturbances "fly off" unhindered to 
infinity, where they are no longer observable, never to return. 

The double-shift construction is an easy way to make a chaotic 
reversible CA. 

These examples clearly show that whether a system is Bernoulli [or 
Kolmogorov (K) (26)] has no direct relation to the "complexity" of the 
space-time patterns. 

E xa mpl e  C. Consider the 1D, four-state {0, 1,2,3} nearest 
neighbor CA whose local rule f is determined by the second and the third 
coordinates as 

f(a,  b, c)= g(b, c) (4.5) 

where g is the same as in example B. Here f is a left shift for the lower bit 
and the identity map for the higher. In this case there is no observable 
invariant measure. The reason is exactly the same as in the identity map 
case. However, this example has many invariant measures that make the 
system isomorphic to B(1/2, 1/2). A typical space-time pattern is shown in 
Fig. 6c. 

5. S T A T I O N A R Y  S T A T E  OF OM1 M O D E L  

In Section 3 we have empirically given various phases. Periodic phases 
are obviously nonturbulent, although spatial randomness due to initial 
randomness may be preserved. We have observed three nontrivial phases 
T, S~, and So. In this and the next sections we consider stationary states 
on infinite lattices. We will see in the next section that there are only two 
distinguishable phases in the parameter range of these three phases on 
infinite lattices. 

As in many problems of statistical mechanics, we are interested in the 
question of whether we can predict macroscopic phases from microscopic 
dynamics (in our case from local rules f ) .  Fortunately, in our 0M1 model 
we can accomplish this goal rigorously. This will be demonstrated in this 
and the following section. Our strategy can be summarized as follows: 

1. We begin with the 0M 1 system with uniform product measure/% 
on ~o-~ {0, 1, M} z as the initial measure, This system is denoted 
by (T, Qo,/~0). Notice that here, (T, Qo, ~o) does not imply a 
measure-theoretic dynamical system, since /~o is not necessarily 
invariant. This is also true for the systems in items 2 and 3. 
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2. We show that there are no adjacent M and 1 after two updates. 
The system obtained from (T, s after two updates will be 
denoted by (T, g?l, #1) (Section 5.1). 

3. We define a one-to-one map ~b: (T, (21, #1) --+ (T', ~2, P'), which 
takes the system to a kind of 1D hard-rod dynamical system (the 
P-I system as defined in Sections 5.2 and 5.3). This system will be 
used to find the effective local rules for the T- and S-phases. 

4. We define another one-to-one map 0: (T', f22, #') --+ (S, ;23, v), 
which takes the system to an "almost" independent two-color- 
particle system, P-II. We will use this system to find the obser- 
vable invariant measure v~ and demonstrate that the measure 
defines a Gibbs random field (Section 6). Thus, the statistics of the 
spatial pattern can be obtained, in principle, from a partition 
function. Furthermore, we will use this map to show that the 
T-phase is "weakly" turbulent (Sections 7 and 8). 

Thus, starting from the local rules, we can completely predict the 
macroscopic states of the two phases. 

5.1. Absence  of A d j a c e n t  M and 1 

The S- and T-phases are differentiated by the local rule for the triplets 
M O M  and 0M0. If both MOM-- ,  0 and 0M0 ~ 1, then the system is in the 
T-phase. Furthermore, the S-phase can be divided into two phases, labeled 
Su and Sb. In the S~-phase 010 ~ 0 and 0M0 ~ 1. These rules have a small 
probability of presence on finite lattices in the stationary state of phase S,. 
We will see that the difference between So, and Sb is observable only for 
finite systems. 

Before proceeding with the analysis we introduce some standing 
notation. 

# indicates "wild card," meaning any cell state is allowed. 
2 indicates "not state x," meaning any cell state is allowed except x. 
*x (resp. x*) denotes the sequence . . .xxx (resp. xxx...). 
(abc) denotes the triplet abc. 
[a...z] denotes the totality (cylinder sets) of configurations containing 

the local configuration a...z around the observer. 
We claim: Starting from any initial configuration in the T- and 

S-phases, there is no spatial configuration containing M adjacent to 1 after 
two time steps. (Hence, any stationary spatial pattern cannot contain local 
configurations M1 and 1M.) 



614 Oono and Yeung 

Proof. Let M ~ and 1 ~ be the following subsets of A3: 

M ~  {(abc):f(a, b, c)=M} 

1~ {(abc):f(a, b, c )=  1} 
(5.1) 

Of course, these depend on f, which is different from subphase to subphase. 
From inspection of Table I we see that M ~  {(J)0M), (010)} for all sub- 
phases in the T- and S-phases, In order for local configuration 1M to exist 
at time t +  1, T I( [1M])  must not be empty. Therefore, if 1M exists, then 
there must be triplets ( # M 0 )  or (#01)  at time t such that f ( # ,  ~ ,  0) or 
f ( # ,  0, 1) = 1. From inspection of Table I in subphases T1, T2, Sal, and 
Sbl through Sbl 2, we have 

implying 

1 ~ c {( # M #  ), (016), (MOM)} 

1~ {(#kTo), (#ol)} =o 

(5.2) 

(5.3) 

Thus, there is no 1M after the first update in these subphases. By sym- 
metry, M1 is also not allowed. In the remaining subphases, T3, Sa2 , Sa3 , 

Sbl 3, and Sb14, the situation is a little more involved. From Table I we have 

1~ { ( # M # ) ,  (016), (MIO), (O1M), (MOM)} (5.4) 

Therefore 

l~ { (# J~O), (~01)} = (MIO) 
(5.5) 

1 ~ { ( o k ? #  ), ( l o # ) }  = (O1M) 

However, in these subphases f ( # ,  M, 1)= 1, so that T([M10])  cannot be 
in [01M] or [M10].  By symmetry, T([01M]) cannot be in [M10] or 
[-01M]. Therefore, there are no local configurations of the form 01M or 
M10 at time t +  1 and thus no configurations containing M1 or 1M at 
time t + 2. | 

Thus, all the local rules containing 1M and M1 are disqualified as 
effective local rules. We must show which of the remaining local rules 
survive as effective rules. To this end, we map our system to an interacting 
particle system. 

5.2. M a p p i n g  to  Part ic le  S y s t e m  I 

We now show that the system without any M adjacent to 1 can be 
considered to be a system of interacting solitons. Toward this end we 
introduce a consistent definition of the soliton direction and position. 
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Any inhomogeneity must be with the local configuration XOY, where 
X and Y are not simultaneously 0, since M and 1 cannot be adjacent. We 
define the positions and the directions of propagation of solitons as in 
Table III. Figure 7 illustrates some of these solitons. 

A pair of left-going and right-going solitons can only be in collision 
configuration if they are within two lattice sites. Actually, collision con- 
figurations must contain one of the following local configurations: MOOM, 
MOM, 1001, or 101 (see Fig. 7). Local configurations MOOM and MOM 
are just before the collision and 1001 and 101 are just after. 

If a soliton is not associated with any collision configuration, then it 
stays at the same interstice for three time steps. We can introduce a phase 
variable ~o e {0, 1, 2} to specify how long the soliton has been at the same 
interstice. If q~ = 2 and no collision occurs, the soliton moves to the nearest 
neighbor interstice according to i tsdirect ion and q~ becomes 0. Collisions 
occur only between ~p -- 2 solitons, immediately after the collision the phase 
variables of solitons involved in the collision becomes 1. The phase variable 
otherwise increases by unity at each time step. If we specify the position, 
the direction, and the phase of each soliton, then we can uniquely map the 
original spatial configuration to a system of solitons with internal phases. 

Now we eliminate the phase variable q~ by mapping to a system in 
which the particle moves one site per step. For  a lattice of size N, we 
prepare another lattice of size 3N both with periodic boundary conditions. 
The phase, position, and direction of a soliton on the original N lattice is 
mapped into a left- or right-going particle on the 3N lattice as follows. A 
right-going (left-going) soliton between the n and n + 1 cells with phase ~0 

Table Ill. Direction and Phases of a Soliton between Sites n and n + l  
in the {0. 1, M}  Representation and the Corresponding 

Position in the P-I Representation a 

Configuration Phase Direction Position in P-I 

# 10_M# 0 Right 3n 

# M0t  # 1 Right 3n + l 

# _M0]" # 2 Right 3n + 2 

#M01 # 0 Left 3n + 2 

# 1_0~# 1 Left 3n + 1 

# ]'0_M # 2 Left 3n 

a Site n is marked by 
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is mapped into a particle at the 3n+(p ( 3 n + 2 - ~ o )  cell in the new 3N 
lattice. Thus, via the intermediate soliton picture we can injectively map 
any spatial configuration allowed in the stationary state of T- and S-phases 
to a many-particle system. Let us denote this map ~b, and call the system 
the P-I system. 

The configuration of particles in the P-I system has several restrictions. 
The most important one is that two neighboring particles traveling in the 
same direction must be separated by 5 + 3i (i = 0, 1, 2,...) lattice spacings. 
The minimum separation between two particles on the N lattice is given by 
10 IIMII 0~ (11 indicates the location of the soliton), which is separated by 
five lattice spacings on the 3N lattice. Since all neighboring particles travel- 
ing in the same direction must have the form 10 IIM...Mll 01 for one of the 
phases and the separation on the 3N lattice is independent of phase, the 
distance on the 3N lattice must be 5 + 3i (i--- 0, 1, 2,...) lattice spacings. 
Other restrictions can be obtained in the same manner: two neighboring 
particles traveling in the opposite direction are separated by 3 + 3 i  
( i=  0, 1, 2,...) lattice spacings if they are traveling away from one another 
and 1 + 3i (i--- 0, l, 2,...) lattice spacings if they are traveling toward each 
other (see Fig. 7). The subset of all the particle configurations on the 3N 
lattice with these constraints is invariant, if the dynamics is specified 
through the original 0M1 dynamics. This dynamics, ~bT~b 1, will be 
detailed in terms of particles in the next subsection. This map ~b is one-to- 
one between the original configuration without adjacent M and 1 and the 
particle configuration on the 3N lattice with these constraints. 

5.3. Collisions of Particles in the P-I System 

We claim that the interactions among particles on the 3N lattice are 
all binary interactions. 

To discuss collisions it is convenient to introduce the parity of a par- 
ticle. We define the parity of a particle as even if it occupies an even-num- 
bered site at an even time step from an arbitrarity chosen t = 0 and an odd- 
numbered site at an odd time step. Otherwise, the particle has odd parity. 
(The parity is defined only locally around O, since we use periodic lattices.) 

There are two types of collisions in the P-I representation in the phase 
T and the phase S~. If the colliding particles have the same parity 
(separated by an even number of lattice spacings), then the collision occurs 
after the-particles become four lattice spacings apart and both particles 
change directions after the collision (Fig. 7a). If the colliding particles have 
different parities, they do not interact until after they are adjacent to each 
other. In the Sa-phase the particles then annihilate each other (Fig. 7b). In 
the T-phase they merely change directions (Fig. 7c). It should be noted that 
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Fig. 7. (a) A same-parity collision (same in both S- and T-phases). The soliton positions are 
marked by a line and the arrow indicate the direction of propagation. The time steps marked 
by asterisks are the collision configurations. (b) An opposite-parity collision in the S-phase. 
The solitons are annihilated in the collision. (c) An opposite-parity collision in the T-phase. 
The solitons survive the collision. (d) A double wall (two solitons traveling in the same direc- 
tion separated by the minimum distance) propagating in the T- and Sa-phases. (e) A collision 
in a double wall in the Sh-phase. 

in bo th  cases the pa r i ty  of  the col l iding par t ic les  is conserved when the 
par t ic les  survive. 

In  phase  Sb, in add i t i on  to the two types of  coll is ions ment ioned  
above,  there  is an add i t i ona l  in terac t ion ,  which occurs  when two sol i tons 
t ravel ing in the same d i rec t ion  are separa ted  by five lat t ice spacings (the 
m i n i m u m  sepa ra t ion  between the two par t ic les)  (Fig. 7d). In  this case the 
t ra i l ing sol i ton is des t royed  and  the leading  sol i ton changes  d i rec t ion  
(Fig. 7e). 
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We must show that all interactions among particles in the P-I system 
can be accounted for by using the binary interactions considered above. 
Since the particles are local objects, all two-particle interactions are taken 
care of by these binary interactions. There can be no longer range binary 
interaction than those already given. Therefore, we just need to ascertain 
that there is no interaction involving more than two particles. Consider 
two neighboring particles traveling in the same direction. The separation 
must be 5 + 3i (i = 0, 1, 2,...). Therefore, if the leading particle is involved in 
a collision, the separation between the two particles will be 3 + 3 i  
( i=  0, 1, 2,...) immediately after the collision. This separation is wider than 
the interaction length (1 for odd separation and 4 for even), so that the 
second particle does not interfere with the first collision. 

Thus ~b maps the original system to a many-particle system with 
binary interactions. Notice that ~b-~b is the identity. The system can be 
regarded as a slightly complicated hard-rod system. 

Finally we mention another possible interpretation of the result of the 
collisions. Instead of viewing the particles as changing directions upon 
collision, we can interpret the collision as the two particles passing through 
each other. In this case, if two particles are involved in a same-parity 
collision, each particle moves five lattice spacings in the direction of 
propagation instead of just one. During an opposite-parity collision each 
particle moves two lattice spacings instead of one. This interpretation has 
the advantage that same-parity collisions would preserve individual 
direction as well as parity. 

5.4. Effective Rules for Finite Systems 

In the S-phase, since the collisions of opposite-parity pairs cause pair 
annihilation, the stationary state on the periodic lattice contains all same- 
parity particles and/or same-propagating-direction particles only. (Notice 
that only if the size of the lattice is even does the parity have global 
meaning. If the size is odd, then the parity of a soliton changes every time it 
travels around the lattice, so that only the latter case is possible.) If there 
are Lo (Le) odd (even) left-going solitons and Ro (Re) odd (even) right- 
going solitons in the initial state, the stationary state will contain 

I L o -  R eL of odd left-going solitons if Lo > Re 

I L o -  Rel of even right-going solitons if Lo < Re 
(5.6) 

]Le- Rol of even left-going solitons if L e > R o 

I L e -  Ro] of odd right-going solitons if Le < Ro 

The expectation value of the number of solitons in the random initial con- 
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figuration can be calculated by adding the product of all triplets in which 
the middle site is zero times the number of solitons in that triplet. This 
procedure gives an expectation value of 10N/27 solitons, where N is the 
size of the lattice. Additionally, there are some solitons that arise from the 
1M and M1 in the initial configuration. This contribution depends on the 
specific rule for each subregion, but is always much smaller than the 
contribution from the zeros; for example, in one of the subphases of the 
T-phase, the 1M and MI  add an extra 14N/35 to the expectation value. 
Some of the solitons will form double walls (solitons traveling in the same 
direction separated by the minimum distance, see Fig. 7d). The expectation 
value of the double walls in the initial configuration can be calculated in 
the same manner and is 4N/35. In the language of particles in the P-I 
system, each species (specified by the direction and parity) is created with 
equal probability and the expectation value of each species is ~ 5N/54. 

The total number of solitons in the stationary state is the fluctuation 
in the numbers of the solitons of each species. Therefore, assuming random 
initial conditions, the expectation value of the number of solitons surviving 
is of order x/-N, so the density is proportional to 1/x/-N. In the phase Sa 
there is also the possibility that some double walls will survive. The 
probability of any individual double wall surviving is approximately the 
square of a single soliton surviving. Hence, the probability of there being 
double walls in the stationary state can then be estimated as 
[2(27/lOzcN)1/212(4N/35) ~ 1/20. This is independent of the system size, so 
the density becomes of order 1IN. 

The effective rules for the S-phase can now be deduced. For almost 
every initial condition the stationary state of the S-phase must contain 
large stretches of homogeneous sites since the density of solitons is propor- 
tional to l/x/@. With probability one for large N, the stationary state must 
also contain isolated left- and/or right-going solitons. In phase S o there is 
also a 1/20 probability that the stationary state will contain double walls. 
The effective rules in the Sb-phase are as follows: the rules for triplets (000), 
(111), (MMM) due to homogeneous stretches; the rules for triplets (001), 
(011), (110), (OMM), (MMO) due to isolated solitons, with additional rules 
for (M01), (00M) for left-going solitons and (10M), (MOO) for right-going 
solitons. In the So-phase there may also be effective rules for (010) and 
(0M0) due to the double walls. The collision between equal-parity particles 
does not introduce any new rules. 

In the T-phase odd-parity collisions do not result in the annihilation 
of particles, and relative parities between particles are conserved. Therefore 
odd-parity collisions are present in the stationary state and all triplets 
occur except for those containing M1 or 1M. Hence the effective local rules 
are those obtained empirically in Section 3. 

822/48/3-4-17 
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6. S T A T I O N A R Y  STATES IN THE LARGE LATTICE L IMIT  

We have shown in the preceding section that after two time steps the 
configurations and dynamics of the T- and S-phases can be mapped by ~b 
to an interacting particle system. To consider the stationary state of the 
particle system, we further map the system to a new particle system (P-II 
system). Then we will show that both the T- and S-phases have unique 
observable stationary states. The stationary state for the T-phase spatially 
defines a Gibbs random field. 

6.1. Mapping to Particle System I I  

From now on we consider infinite systems. Let the particle positions in 
the P-I system constructed in Section 5 be 

�9 . . y _ 2 < . y  l < O ~ y o ~ < y l ~ <  --. (6.1) 

Mimicking Sinai, (44) we introduce the following map O: 

O(yo) = Xo 

O ( y , ) = x i _ t + y s - y i _ ~ - q ( y ~ - y , _ ~ ) ,  if i > 0  

O ( y , ) = X ~ + l + Y i - - y , + l + q ( y ~ + l - - y ~ )  , if i < 0  

(6.2) 

where 

41 if y is  even (6.3) 
q(Y) = if y is odd 

We further assign a color, red or blue, to each particle, depending on 
whether xi is even or odd. The velocity of the particle at xi is identical to 
that of the original particle at yi. Let T' = ~b o To ~b- 1 be the time evolution 
operator for the P-I system. S = 0 o T' o 0 - 1 defines the dynamics as follows: 

1. Unless two particles are at the same site, x i =  xt + ui, where u~ is 
the velocity of the ith particle (u~= +1 for right-going particles 
and - 1  for left-going particles). 

2. If two particles are at the same site, the colors and indices are 
exchanged, but the particles pass through one another. 

3. When the particle with index zero passes through the origin to the 
left, the index of each particle is decremented by 1 and the position 
of each particle is incremented by either 1 or 4, depending on 
whether the particle immediately to the right is of the same or the 
opposite color. 
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4. When the - 1  particle passes through either 4 or 1 to the right, 
depending on whether the particle immediately to the right is of 
the same or opposite color, the index of each particle is incremen- 
ted by 1 and the position decremented by either 4 or 1. 

The map 0 is one-to-one in the sense that 0 - ~ 0 =  1. Since the 0M1 system 
and the P-I is one-to-one, so is the relation between 0M1 and P-1I. We 
consider the phase space  f f 2 2 = 0 o ~ ( T 2 { 0 ,  1, M}Z) .  The f2 2 is a subset of 
the set of all possible color-direction combinations of the P-1I system. A 
detailed characterization of ~c~ 2 follows. 

The restrictions on the configuration space of the P-I system place 
restrictions on the configuration space of the new system. The separation 
between a particle P and P', the next particle traveling in the same direc- 
tion, is 4 + 6i (i = 0, 1, 2 .... for T- and S,-phases, while i = 1, 2 .... in Se) and 
is independent of the number of particles traveling in the opposite direction 
between P and P'. The separation between P and the next particle traveling 
in the opposite direction is 2i (i = 0, 1, 2,...) and is independent of the num- 
ber of particles traveling in the same direction as P between the two par: 
ticles. There are no restrictions on the sequence of colors. These conditions 
require that the particles are either on all even or on all odd lattice sites at 
any one time and that only two particles can occupy any site at once. 
Therefore, the dynamics of the system is completely specified. 

The dynamics under this second map is almost free particle, with the 
exception for a random walk due to the particles crossing the origin. This is 
similar to the hard-rod model studied by Sinai, (44) and Aizenmann et al., (43) 
except there are two species of particles instead of just one. 

This mapping is useful in showing that the N ~  oo limit stationary 
state for the T-phase is a Gibbs state, and also that the T-phase is weakly 
turbulent (Section 8.3). 

6.2. T -Phase  Exhibi ts  Gibbs R a n d o m  Field 

Let (2 o = {0, l, M }  z be the phase space of the 0M1 system. Let #0 be 
the uniform measure on 12 o (i.e., the product measure). We topologize t'2 0 
by introducing the Tikhonov topology. Note that in this topology x, y e (2o 
are close if x and y differ only at remote lattice points from O. Thus, this 
topology is in conformity with our basic idea on observation. 

In Section 5 we have shown that f21 = T2~C2o can be described as a 
many-particle system (P-I system). The initial measure #' for the P-I 
system is a Gibbs measure. Although the statement is almost trivial, for 
convenience we will give an explicit proof here. Let #1 = #o ~ T-Z, which is a 
measure on f21. Let A c Z be a finite set on the 1D lattice and A c = Z \ A  
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(Z outside of A). For  xe121 ,  XA is the configuration restricted to A. We 
use XA V y (following Ruelle ~5)) to denote the element g e121 such that 
~A = XA and ~ac= y. A measure # is a Gibbs measure if the conditional 
probability satisfies: 

1. #(~a = x [  ~ac= y) is positive iff x v Y~121 

2. #({z = x l {zc = y) is continuous w.r.t, y for each x and A 

In our case # ( { a = X l { A C = y )  is always positive if x v y e 1 2 1 .  

Therefore we have only to check the continuity. Intuitively, if two portions 
far apart on the lattice are uncorrelated, then a small change in y (i.e., the 
change of configuration far away from A) should have little effect on the 
probability of finding x in A. But this is obvious from the construction of 
#~; T is defined through local rules f so that, if A and A' are more than 
four lattice points apart, then 

#I (~A = X, ~A' ~-- Y) ~" # I (~A = X) ~ I (~A '  = Y) 

since #o is the uniform product measure on 120. Hence #1 is a Gibbs 
measure. 

Next, we map the 0M1 system after two timesteps to the P-I system 
by ~b constructed in Section 5. Let 122 = ~b121. Here ~b is a bijection, and is 
defined locally, so that ~b is a morphism in Ruelle's (5) sense. Hence # ' =  
#1 ~ b-1 is again a Gibbs measure. 

We use this fact to prove that the observable invariant measure on 122 
is a Gibbs measure. We map the P-I system to the P-II system by the map 
0 introduced in Section 5. Let 123 = 0122. We can topologize 122 and 123 by 
introducing the Tikhonov topology regarding the whole lattice as the direct 
product space of cells. Then the map 0 becomes continuous: Let x e 122 and 
y = Ox. For any neighborhood U 2 of y there is a subset K c Z around O 
such that U2 contains all the configurations that differ from y only outside 
K. Then 0 -  ~(U2) contains all the configurations that differ from x only out- 
side a subset K ' ~  Z whose size is not smaller than the size of K. Hence 
for arbitrary U2, we can have an open set V l c O - ~ ( U 2 ) .  Hence 0 is 
continuous. Let v = #'o 0-1. Although v is a Gibbs measure, it is not an 
invariant measure. 

The P-II configuration is specified by the particle and the color 
configurations, so that 123 c 12p x 12c, where 12p is the particle phase space 
and ~ c  is the color configuration space. Let rce (~Zc) be the projection to 
f2p (12c), and v v =  v oT~p 1, Vc~. v OT~c 1, These are marginal distributions 
and it is easy to show v ~ vp x Vc. 

Since on 123, S -= 0 o ~b o To ~b - 1 o 0 -  ~ is reversible (this means that T is 
also reversible on 121= T2120), S~ (~n~176 sn123~'.123, i.e., the phase 
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space is invariant. On this set we claim that the direct product measure 
v e x  Vc = v~ is the observable invariant measure. Since vp and Vc are Gibbs 
measures, so is v~. 

Let us suppress colors and only consider particle positions in the P-II 
system. Next, we separate right-going and left-going particles. The particle 
configuration is a superposition of these right- and left-going particle con- 
figurations. They do not interact with each other. Hence, the configuration 
of the right-going (left-going) particles translates rigidly with an occasional 
rigid shift due to the color constraints. Since v e is obviously translationally 
symmetric, vp is invariant. The same discussion applies to Vc; Vc is also 
invariant. 

If we can prove that eventually the correlation between color and 
position configurations is almost surely lost (w.r.t. v), then we may claim 
that v e x  v c is the invariant measure. Its observability in the sense of 
Section 4 must be proven separately. 

Let voo be the invariant measure. We want to show that for any local 
finite cylinder set fl c S~176 _= 0n~0 SnD3 

vo~(fi) = v / f i )  v c(f l)  (6.4) 

Then this implies vo~ = vp x vc. Let fi be a set of configurations on a finite 
set A. As can easily be seen, each particle p, travels with average velocity ui 

while the color lattice shifts O(xf7 ). After time t the color lattice shifts 
r/right(t)-r/left(/'), where f/left(right)(/') is the number of particles traveling 
through the origin to the left (right) during time t. Since the measure 
v is symmetric under space reversal and nleft and /~/right a r e  proportional 

to t, the difference is v-almost surely O(,,ft) .  Each particle Pl travels 
tbli+C(l~lleft~nright), where Icl <4.  Therefore the average velocity of Pi is 
. ,  + o( l&/  t ). 

Notice that the correlation between colors and particle positions exists 
only within the range of two lattice points with respect to the measure v. As 
we have already seen, with v-probability 1 the subsets of the lattice 
occupied by the same configuration and by the same color pattern are 
separated by O ( N )  lattice points after N time steps. Hence on any subset of 
the lattice whose size is less than bN,  where b is an appropriate positive 
constant, the color and particle position patterns are statistically indepen- 
dent. Let vN = v o S -  N. Then for any cylinder set fl of configurations on any 
finite subset A of the lattice whose convex hull has diameter smaller than 
bN,  we have 

v N(fl) = Vc(fl) v e(f l)  (6.5) 

v ~ Since the set of all Let us consider the family of measures { N}N=~. 
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measures on ~23 is a compact set (with the weak topology), {v~v}~=~ has 
an accumulation point. Let us denote this to be v~. By construction 

v~(~)  = Vc(~) v e(~) (6.6) 

for any set of local configurations on any finite subset of the lattice. Hence 
lira u ~ ~ v N is unique and identical to v c x  re. 

Finally we show that v~ is observable. After two time steps again we 
can map any finite system to a finite P-II system with minor technical 
modifications. Let N be the size of the system. Then after about each N 
time steps the correlation between color and configuration reappears. 
However, this correlation lasts only a few time steps (definitely independent 
of N). Hence, if we make statistical tables of cylinder sets, asymptotically in 
the N--* oo limit, they correspond to independent color-configuration 
statistics. Obviously, the finite lattice configuration distribution and color 
distribution converge, respectively, to v e and v c. Therefore, Vex  v c is an 
observable invariant measure. In this case it is unique. 

Y. Takahashi (private communication) has conjectured that all the 
observable stationary states of 01-CA are Gibbs random states. 

The observable measure obtained for the T-phase is a K-measure. We 
believe that this is, however, not Bernoulli, since the P-II system is similar 
to a system known to be K but not Bernoulli. The system is given as 
follows. Let ~r be the full shift on X = { -  1, 1 } z with uniform measure #. 
Let x =  {x,,} +~_o~ and y =  {y,} +~_o~, where x, y ~ X .  Put R(x,  y ) =  (ax, ~-~0y). 
Then R(x,  y)  has been shown by Kalikow ~45) to be K but not Bernoulli. In 
the P-I representation, we have left and right particle lattices, which 
basically undergo a shift, and the color lattice, which shifts left or right, 
depending on the value of the particle lattices near the origin. The 
measures on the left and right lattices are the same. 

There are other examples of non-Bernoulli K-systems, but as far as we 
know, all these examples ~45) are designed to be non-Bernoulli. We may say 
that our T-phase would be the first non-Bernoulli K-system that was not 
explicitly created as a counterexample. We will return to this problem in a 
following paper. 

6.3. S -Phase  Is Tr ivial  

We have shown in Section 5.4 that the density of solitons in the 
S-phase is asymptotically 1/,,/N, where N is the size of the lattice. 
Therefore a local observer would see fewer and fewer solitons (or particles 
in the P-I representation), until finally in the N ~ oo limit no soliton will 
pass the origin during any finite time observation. Hence, to the observer 
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the stationary state is purely homogeneous (i.e., the homogeneous states 
have measure 1 with respect to the observable invariant measure) and the 
S-phase is trivial. 

7. P O S S I B L E  C H A R A C T E R I Z A T I O N  OF 
" T U R B U L E N T "  P A T T E R N S  

We have analyzed the T- and S-phases in detail in the preceding 
sections. In the large-system limit the S-phase is trivial. The T-phase in this 
limit gives a Gibbs random field corresponding to disordered statistical 
systems. Although this is a very nice property, it is clear from the simple 
counterexamples discussed previously that this does not necessarily imply 
that the system exhibits turbulent space-time patterns. The T-phase has 
been mapped to an "almost" independent particle system, system P-1I, but 
in this system, in contrast to ideal gas systems, the effect of localized per- 
turbation affects increasingly many particles (hence, in the original system, 
many cells). This propagation property of disturbances is not found in the 
simple counterexamples. As is suggested by Wolfram, (19) this propagation 
property should be required in order to have turbulent space-time patterns. 
However, as we will see later, there are difficulties in this proposal. 

Before going into our own proposal in the next section, here we 
critically survey possible characteristics of "turbulent" states. 

Attempts so far to characterize complicated space-time patterns may 
be summarized as follows. Wolfram (19) introduced space and time entropies 
and the Kolmogorov-Sinai entropy with respect to a special partition, and 
used them to try to characterize "classes I-IV" of CA. He also introduced a 
Green's function to characterize the propagation of the effect of pertur- 
bation applied to a cell at time t. Packard (2~ introduced the Liapunov 
characteristic (LC) exponent, which is the usual LC exponent for the 
dynamical system on S introduced in Section 4. If there is a propagation of 
patterns (i.e., if Wolfram's Green's functions have domains that expand 
linearly in time), then the LC exponent becomes positive. Moreover, it 
should be noted that, if the system has a positive Kolmogorov-Sinai 
entropy, we can always invent a metric that gives us the LC exponent iden- 
tical to the entropy. Thus, the LC exponent is not a distinct quantity. 

We consider the following possible characteristics of turbulent space- 
time configurations: 

1. Complexity 

2. Positivity of entropies 

3. Decay of space-time correlation functions 
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4. Length of period as a function of system size 

5. Sensitive dependence on initial conditions 

6. Relation to random fields 

Although it is almost immediately obvious that 1-3 and 6 are insufficient, 
they are still of some interest, so we include here some general discussion of 
these characteristics. Item 5 is closely related to Wolfram's proposal; we 
will point out its inherent difficulty. 

7,1. Complexity of Patterns 

Intuitively, we expect that turbulent patterns should be complicated, 
so we must make the meaning of complication or complexity clear. As is 
mentioned in the introduction, the definition of randomness is directly 
related to the definition of algorithmic complexity. (16~ Hence, even in our 
present case of space-time patterns, it may be reasonable to use complexity 
in the algorithmic sense. It is reasonable to define complexity of the 
stationary state on a size N lattice as the minimum program length for a 
universal Turing machine (46) to produce the space-time pattern. If the 
necessary program is asymptotically the size of order NT for large N, where 
T is the period, we say that the stationary state is algorithmically complex. 
In this definition all the patterns are converted into 1D strings, so that we 
can use an ordinary Turing machine. The definition is in conformity with 
that for the complexity of sequences. (16"18) We have the following obvious, 
but nonetheless important proposition: 

Any nontrivial stationary state of CA cannot be algorithmically com- 
plex. Here "nontrivial" implies that the period is an increasing function of 
the system size without upper bound. 

Proof. Let Sa(N ) be the periodic orbit for the finite lattice size N 
with the initial configuration a ~A N. To specify S~(N), we must specify 
T N = ~ S a ( N  ) (the period) times N cell states. However, to produce this 
pattern, we only need N and the initial condition a ~ A u. The dynamics and 
the program to find the period by pattern matching require only a finite- 
length program with length independent of N; asymptotically we need only 
of order N bits of source program for a Turing machine. Hence, the ratio of 
program length divided by N T  goes to zero asymptotically due to the non- 
triviality. | 

Notice that the proposition is true even if the local rules are absolute 
cell-position-dependent. 

Wolfram (19~ concluded an analogous statement, "the evolution of CA 
can never generate random space-time pattern," from the construction of 
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the configuration entropy of the space-time pattern. The assertion, as well 
as the above proposition, is really trivial. However, this implies that it is 
highly likely for us visually to recognize significant (meaningful) patterns in 
the space-time configuration of CA. In these patterns, however, n o  deep 
physical or mathematical facts need be involved; they must appear due to 
the deterministic nature of the model itself. 

Thus, if we require the complexity of a space-time pattern to be a 
characteristic of "turbulent" patterns, then no CA can be turbulent. 
However, we still believe that certain patterns produced by CA are 
sufficiently complicated, reminding us of turbulence. To characterize these 
patterns, the above observation shows that the algorithmic randomness is 
useless. 

Even if the space-time patterns are truly complex in the algorithmic 
sense, the system need not be entitled to be called turbulent. Consider a 
very trivial system: juxtaposed maps, i.e., the CM without any spatial 
coupling. If each map is chaotic, then we can have, in the genuine sense, 
complex space-time patterns. However, any spatially localized perturbation 
cannot, by definition, propagate to cause global disturbances; the system is 
almost stable. It is not at all sensible to call such a system turbulent. 
Hence, we must conclude that the algorithmic complexity is neither 
sufficient nor necessary to characterize turbulence. 

Thus, we will not consider the algorithmic complexity of space-time 
patterns further. There are other measures of complexity, some ~24) of which 
are interesting, but they try to measure subtle organization of patterns, so 
we will not consider them here. 

7.2. Ent rop ies  

7.2.1. Kolmogorov-Sinai Entropy. The positivity of the 
Kolmogorov-Sinai entropy is not a sufficiently strong characteristic to 
distinguish turbulent space-time patterns, as is clear from examples A-C 
in Section 3. There is a fundamental objection to the Kolmogorov-Sinai 
entropy as an indicator of turbulent patterns. As is noted in the introduc- 
tion, isomorphisms do not respect any spatial structure, so that 
isomorphism invariants cannot be used to characterize turbulent space- 
time patterns. Hence, the Kolmogorov-Sinai entropy must be disqualified 
as an indicator of turbulent patterns. However, still the KS entropy is an 
interesting quantity, so here we mention a few generalities on this quantity. 

ThE relation between the complexity and the dynamical theoretical 
entropies due to Brudno (is) suggests that the Kolmogorov-Sinai entropy of 
any CA is bounded from above even in the infinite-system-size limit. 
Wolfram (I9) defined and showed the finiteness of a lower bound of the 
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Kolmogorov-Sinai entropy for 1D CA by choosing a special partition of 
A z, i.e., the partition { [a] ,  a e A }, which is, in general, not a generator. 

If the state of the ith cell at time t + 1 is determined by the states of 
cells at time t in a finite set ~ (Y,.~ i) for all i e L, we say the CDS is a 
local CDS (LCDS), where # ( ~ )  is uniformly bounded from above by ~; .  
If a LCDS allows only a finite cell state set, we call it a local CA (LCA). 
Ordinary CA are all LCA. The local rules may be spatially inhomogeneous, 
i.e., the rules can depend on the absolute positions of cells. For LCA we 
have the following proposition: 

Any LCA has a finite Kolmogorov-Sinai entropy for any T-invariant 
empirical measure (constructed in Section 4). 

Proof. (For simplicity, a proof for a 1D system is given.) The 
measure-theoretic entropy is defined as (26) 

h~(T) = sup h~(T, ~ )  (7.!) 

where h~(T, ~ )  is the entropy of T with respect to the partition ~ ,  and sup 
is taken over all finite partitions of A z. First, we use the standard fact that 
A z can be mapped to S =  [0, 1] • [-0, 1], as has already been done in 
Section 4. Any finite partition on A z is represented by a finite partition of 
S. In this representation any cylinder set around the observer corresponds 
to a rectangle. Notice that minus log of the area of the rectangle is 
asymptotically proportional to the length of the word necessary to specify 
the cylinder set. If any member of the partition ,zr is a finite sum of finite- 
length cylinder sets, then h~(T, d )  is finite. For such d ,  each component is 
characterized by words of length less than, say, l (we call such a partition 
an /-local partition). Due to the definition of LCA, we have the following 
estimate: 

# T-i~r <-..(#A) '~ +~ (7.2) 

so that hu(T,d)<<.~A/'log(#A). We can always make a monotonically 
refining sequence of local partitions {d,} converging to an arbitrary par- 
tition which is measurable by experimentally accessible measures. Then the 
mutual entropy H(~'] ~tn)(26) of the partitions d ,  and ~ converges to zero. 
We know the inequality ~26) 

(7.3) 

but hu(T, d~) is uniformly bounded. Hence h~,(T, ~ )  must also be finite for 
any finite partition ~ that is measurable by empirical measures. | 
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We do not claim that the finiteness of entropy is always true for any 
invariant measures. The logic used in the proof is not necessarily legitimate 
for pathological measures that are not empirically obtainable. 

If there is no propagation of patterns, then the topological entropy 
of the system is zero. However, the converse is not true. We can easily 
make a LCA for which the pattern propagates with velocity asymptotically 
proportional to 1/t. 

Our consideration implies that any LCA has zero entropy density. 
This is in conformity with our complexity consideration in the preceding 
subsection. It should be noted that there is a marked difference between 
finite-state LCA and, for example, the Navier-Stokes equation, for which 
Ruelle and others (e.g., Ref. 16) have suggested that there is a positive 
entropy density. Thus, at least mathematically, there is a fundamental 
difference between finite-state LCA and systems governed by partial 
differential equations. We do not know how serious the difference is from 
the physicists' point of view. The difference seems similar to the difference 
between rational numbers and irrational numbers; they are fundamentally 
different, but, for practical purposes, there is almost no difference. 

7.2.2. Sequence Entropies. Wolfram (19) used the combinatorial 
entropies along the time direction (i= const) and along the spatial direc- 
tion (t = const). We can introduce the combinatorial entropies along any 
direction in the space-time (or we can even consider entropies along 

S ~ curves). Let { i}i=0 be a sequence of cell states along a line (precise 
specification of the line is not important). The entropy h per symbol of this 
sequence is defined as follows. Let p~i) be the relative frequency of the j th 
(according to some lexicographic order) sequence consisting of i symbols. 
Then we set 

h = l i m  s u p ( - - 1  ) 
i ~  o:~ i 2 p}il In pJ') (7.4) 

J 

(recall the Shannon-MacMillan-Breiman theorem(47~). If the sequence is 
taken along the line parallel to the time axis, h gives the lower bound to 
the Kolmogorov-Sinai entropy of the system. Since the sequence of cell 
states in front of the observer must be chaotic, h along the time axis must 
be positive. Can we then say that the pattern is turbulent, if both the 
entropies in time and space directions are positive? Example C provides us 
with a negative answer to this question. Actually, the example has positive 
entropy along any line in space-time. Hence, we must conclude that the 
positivity of sequence entropies is not sufficient to characterize turbulent 
patterns. 
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7.3. Other  Properties 

7.3.1. Decay of Space- t ime Correlat ions. Let s(n, t) be the 
state of cell n at time t, which is a number according to a suitable encoding 
scheme. Then we can define the space-time correlation as 

C(n, t ) =  [ (s(n, t)s(0, 0))  - (s(0, 0))2] / (s(0,  0))  2 (7.5) 

where ( ) is the ensemble average with respect to an invariant measure. 
To be chaotic, C(n, t) must decay (but need not decay to zero). If 
C(n, t) decays in any space-time direction, the space-time pattern may be 
turbulent. However, again for example C, C(n, t) decays in any space-time 
direction. Hence, we must conclude that the decay of correlation functions 
is not an adequate property to characterize "turbulent" patterns. 

7.3.2. Length of Period As a Function of System Size. To 
have positive entropy the period T N cannot be a bounded function of the 
system size N. One might suggest that exponentially increasing T N with N 
characterizes "turbulent" patterns. We hesitate to support this suggestion. 
Suppose the sequence of cell states parallel to the time axis is statistically 
homogeneous in time. From the consideration given in the argument for 
complexity, we need only of order N symbols to specify the periodic orbit 
of length T N. Hence, if there is a > 0 such that T N is ~ e aN, then the com- 
plexity per letter must be exponentially small. That is, the orbit must be 
organized in a very delicate way to extend the period, so that the sequence 
must be highly organized. Thus, we hesitate to u s e  T N to characterize 
turbulent patterns. 

7.3.3. Sensitive Dependence on Initial Condit ions. This is 
an intuitively appealing property to consider, but we first must point out 
that completely decoupled CM with chaotic maps considered in Sec- 
tion 7.1, which we preferred not to regard as turbulent, would be turbulent 
under this definition. Therefore the sensitivity is not sufficient, because sen- 
sitivity does not, in general, exclude systems without the propagating 
property. Moreover, there is a theoretical (and practical) difficulty. We 
want to characterize a dynamical system with an invariant measure (i.e., 
stationary states), and in the context of the usual theory of chaos, we do 
not consider perturbations that take the initial conditions outside the 
attractive basin of the invariant measure. Unfortunately, we do not know 
how to perturb initial conditions while still keeping the system in the same 
basin of the stationary state. 

If we naively assume that many local perturbations do not destroy the 
stationary state, then the propagation of the effect of the localized pertur- 
bation, which can be studied by the increase of the Hamming distance H(t) 
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between the unperturbed and the perturbed systems, as has been proposed 
by Wolfram, (19~ might be a good measure of sensitivity to the perturbation. 
However, there is a counterexample. Consider our S-phase in model 0M1. 
The invariant measure concentrated on the 3-cycle {*0", *M*, "1"} is 
orbitally stable against any local perturbation, but many local pertur- 
bations can produce propagating disturbances EH(t) often increases 
linearly in time]. (Recall that the S-phase is an analogue of the excitable 
state in the Belousov-Zhabotinsky system. (~6"37)) 

Thus we must conclude that so far no satisfactory measure of 
sensitivity has been proposed. 

7.3.4. R e l a t i o n  t o  a S t o c h a s t i c  Field. As is discussed in the 
introduction, chaos is closely related to stochastic processes. Since the 
complexity of space-time patterns of any LCA is zero, there is no way to 
have a natural relation between the space-time pattern of CA and space- 
time random fields. 

However, if we consider only the spatial pattern, we can have a 
natural relation to random fields. For example, as we have shown, our 
T-phase exhibits spatial patterns obeying a Gibbs random field. But a 
stochastic field is quite insufficient to characterize turbulent space-time 
patterns. We only need to consider the examples in Section 4.2 to see this. 

8. W E A K  T U R B U L E N T  P H A S E S  

In the preceding section, we have shown that many intuitively 
appealing quantities are insufficient or disqualified as characteristics 
of "turbulent" space-time patterns. We believe, as Wolfram did, that 
randomness of patterns and sensitivity of the global pattern to local 
disturbances are essential to characterize turbulence. However, as we will 
show at the end of Section 8.2, these properties are still insufficient. 
Therefore we consider the complicatedness of the generating partition of 
the system. A quantitative measure of this complicatedness, P-entropy, is 
introduced. We would like to call systems with positive P-entropy weakly 
turbulent. Then we show that the T-phase is weakly turbulent. The reason 
we add "weakly" is that we expect stronger turbulence to be possible in 
CM and PDE systems; they may have positive entropy density (or even 
positive P-entropy density), in contrast to CA. 

8.1. M o t i v a t i o n  

If many similar spatial structures in the t-time-step past of the cell O 
can give different states at t = 0 for the cell O, we would have difficulty in 
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discerning the regularity. The origin of this difficulty lies in the incom- 
patibility of the two partitionings of the state space (in our case, AZ): one 
based on the dynamics and the other based on the spatial (visual) patterns. 
By "incompatibility" we mean the following: spatially similar patterns 
belong to different elements of partitions generated by a generator of the 
dynamical system (similarity of patterns is measured according to a 
suitable norm). More informally, if partitionings of the state space 
according to the spatial pattern in the present and according to that in the 
distant past (or future) are quite different (almost independent), we will 
have a great deal of difficulty in discerning the space-time regularity. We 
believe this is the essence of the turbulent space-time patterns. 

In the following preliminary attempt we take CA as an example and 
make what we have outlined more quantitative. 

8.2. P - E n t r o p y  

Let us introduce a suitable distance ]1 ]1 z) between spatial patterns. Let 
co, co' s A z. We define 

ILco--co'[ID=Max{ilcoi~co~}--Min{i[o~iv~co~} (8.1) 

i.e., k]co--CO'lID is the size of the smallest connected subset of the lattice 
outside of which co and co' are identical. Let us call this distance the 
discrepancy distance. We define the discrepancy distance between two sets 
A and B by 

pD(A, B)=  inf{ Llco--CO'lID, co~A, co' ~ B} (8.2) 

To be specific we consider 1D finite-state LCA T: A Z +  A z with an 
observable invariant measure/l  (i.e., constructed according to the prescrip- 
tion of Section 4) on an invariant set ~2 c A z. Let d be a local partition of 
(2. From this partition we generate the following partition: 

N 

~48= V r % ~ '  (8.3) 
i - 0  

Any element of this partition is a subset of an element of the partition d .  
The De-hull of p s d u  is a subset of dN such that 

[ P ] c =  {P': PD(P', P) <<- C, ~t(p') > O, p' e ~r (8.4) 

We define 

nu.c(p)=#{p ' :p 'e[p]c ,p 'eSCN,  T N p ' a s = ~ i f T N p = s e ~ r  (8.5) 
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That  is, we count  the number  of  elements of  the part i t ion d~v that is 
discrepancy distance c close to the element p but does not  give the same 
element of d after N time steps. The number  is a measure of the 
incompatibil i ty of  pat tern-based and dynamics-based parti t ions a round  p 
(see Fig. 8 for a more  intuitive explanation).  

We would like to modify the definition of  the Ko lmogorov -S ina i  
ent ropy taking into account  only those elements of the part i t ion s~' u with 
large nu,~.(p), say, nN,~(p) >>- fiN for some positive constant  ft. That  is, we 
take into account  the elements of  d u  which have "complicated shapes" 
with respect to the topo logy  based on the visual similarities of the local 
patterns (see Fig. 8). 

The P-en t ropy  P-h,(T, sJ, fl, c) with the threshold fl with respect to 
the T-invariant measure It, the local part i t ion sJ,  and discrepancy c is 
defined as follows: 

P-hiT, d ,  fi, c) = lira sup - ~ - i t ( p )  In/~(p) (8.6) 

n,~.,c(p) i>/~N 

If we set /~=0,  (8.5) reduces to the ordinary  Ko lmogorov-S ina i  ent ropy 
hiT, d )  with respect to the part i t ion ~4. If hiT,  ~ )  is finite, then the 

P 

Fig. 8. Each element of d N is the set that can give a specific time evolution around O during 
N time steps. Let us take an element p e du (the black area) and consider its neighborhood 
defined as the totality of spatial patterns locally similar to the patterns exhibited by elements 
in p (shaded area). [P]c is the totality of elements in ~N overlapping with the neighborhood 
ofp. The nN.c(p) is the number of elements of dN in [Pie that gives different elements of d 
than that given by p after N time steps (hatched elements). If there are many such elements, 
we will not be able to predict the future local patterns of the system readily. 
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P-entropy is a bounded, nonnegative, decreasing function of fl, so that the 
following limit exists: 

lim P-h.( T, d ,  fl, e) = P-h~,( T, d ,  c) (8.7) 

which we call the P-entropy with respect to the partition d and dis- 
crepancy c. 

The P-entropy is defined as 

P-h,(T, c) = sup P-h~,(T, d ,  c) (8.8) 
d 

where sup is taken over all the local finite partitions of t2. We have the 
following obvious but important inequalities for any c >i O: 

P-h~(T, c) <~ h~(T) (8.9) 

and if cl > c2, then 

P-h~(T, el) ~ P-h~(T, c2) 

The following is our (at least tentative) proposal: 

(8.1o) 

Definition. A LCA with positive P-entropy for some finite dis- 
crepancy c is said to exhibit weak turbulent space-time patterns (or simply 
weak turbulent). 

Inequality (8.9) tells us that weak turbulence implies chaos. 
It is possible to define the P-entropy density. We are tempted to define 

true turbulent patterns by the positivity of this quantity. Recall that we 
have pointed out that the positivity of the Kolmogorov-Sinai entropy 
density is not sufficient. We will return to this problem in subsequent 
papers. 

We must show that the definition captures what we want. 
We can easily show that the positivity of P-entropy excludes examples 

discussed in Section 4.2. For example, in the case of the shift, for any local 
partition d and for any positive fl, there is no summand in the definition 
of P-h~(T, d ,  fi, c) for sufficiently large N and any finite c. Hence the 
P-entropy vanishes. 

We next show that P-entropy is not an isomorphism invariant. 
Although this should be fairly obvious from its definition, we show this by 
a counterexample. In the stationary state of the T-phase, T is invertible and 
the Kolmogorov-Sinai entropy is positive finite. Hence, according to 
Krieger, (48~ the system has a finite generator, so that there is an 
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isomorphism to a shift dynamical system with finite symbols (not 
necessarily Bernoulli). For this shift system, the P-entropy trivially 
vanishes, as we have just seen. However, as we will show in Section 8.3, the 
P-entropy of the T-phase is positive. 

We have the following proposition for the positivity of the P-entropy: 
Let a LCA, T: A z ~ A z, be with a T-invariant ergodic measure # and 

local partition ~ such that h,(~))> 0. Suppose for some positive fl that 
there is a positive number ~ independent of N such that 

gN.c(~,~,f l)=l~({p:nN.c(p)>Nfl,  p E ~ u } ) > 6 > O  (8.11) 

where ~ N  ~--- N Vn=0 T-n~. Then the LCA exhibits weak turbulence. 

Sketch of Proof. According to the Shannon McMillan-Breiman 
theorem, (47) asymptotically most of the elements in NN have measures of 
order e -Nh, where h =h~(T, Y)), so that 

P-h,,( T, ~l, fl', c) >1 cShu( T, ~ ) (8.12) 

Hence P-h~(T, ~ ) > 0 .  | 

Notice that if we have an infinite sequence {Ni} such that 
gNi,~'(#, ~ ,  fl) > 6 we can still make the same conclusion, since P-entropy is 
defined by a limit sup in Eq. (8.6). 

Intuitively, it would seem probable that the linear increase in time of 
the width of support of the Green's function (as defined by Wolfram) and 
positive spatial entropy implies weak turbulence. However, we can make a 
simple counterexample: Let each cell state be specified by the pair (ai, coi). 
Let {(oi} ~ {0, 1} z and define a mapping such that this sequence is 
stationary (frozen) under the mapping. Let {ai} e {0, 1, M} z obey the rule 
for one of our S-phases. Then in the stationary state, trivially the spatial 
entropy is log 2, and the width of support of the Green's function (in the 
sense of Wolfram's) increases linearly in time for "many" perturbations. 
However, the system has zero Kolmogorov-Sinai entropy in the stationary 
state, so that it cannot be weakly turbulent. [Notice that in the 
propositions above, nN.~.(p ) counts only perturbations that can make 
naturally occurring cylinder sets. In the S-phase any Hamming distance 
one perturbation destroys the spatial uniformity, so no such perturbation is 
admissible.] 

8.3. T -Phase  Is W e a k l y  T u r b u l e n t  

The T-phase is weakly turbulent. This can be guessed from the 
dynamics of the P-I system, which is essentially that of a two-species hard- 

822/48/3-4-18 
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rod system. To show the weak turbulence of the model, it is sufficient to 
show the positivity of the Kolmogorov-Sinai entropy h,(T)>O and 
g,,l(voo, d , / / ) > 6  for a generator d .  The positivity of P-h(T, 1) is then 
guaranteed by the proposition given in the previous section. 

It is easy t o  show that h , ( T ) > 0  in the P-II representation. The 
observable invariant measure v~ is a direct product measure vp x Vc. Let 
us consider a factor system taking account of the particle motion only. 
Then this is essentially a double shift. Since ve preserves the configuration 
in T2{0, 1, M} z, obviously the spatial entropies of the right- and left-going 
particles are positive. Hence, the Kolmogorov-Sinai entropy of the factor 
system is positive. This implies that h v in the original system is also 
positive. Thus, it is only necessary to show that g,,l(v~, d , / / )  > & In fact 
we will show a stronger statement: Let d be a local partition of the P-II 
system. For p ~ st, with voo-probability 1, nt,c(P) > ~t for some finite//. This 
automatically implies g,,~(voo, d , / / )  = 1. 

The particles travel a distance t + O(xft- ) after t time steps, so that a 
right-going particle at time t is approximately t sites to the left at time 0 
and a left-going particle approximately t sites to the right at time 0. On the 

other hand, the color lattice has only shifted O(xf t  ) in that time span. 
Therefore, an element p e d ,  in general, consists of cylinder sets of length 
2t on the particle lattice, but only O ( ~ )  long cylinder sets on the color 
lattice. 

We consider discrepancy distance one perturbations (which is also the 
Hamming distance one perturbations) in the 0M1 model. Any element in 
the D 1 hull of a given spatial pattern exists as long as no adjacent M and 
l's are contained in the element. There are three methods to make an 
element in the D 1 hull: the translation of a soliton by one site and the 
addition or subtraction of a neighboring pair of solitons. In the P-II 
representation these correspond to changing the color of a particle and the 
addition or subtraction of two particles traveling in opposite direction with 
different colors and separated by 0, 2, or 4 sites. Note that the addition or 
subtraction of a pair of particles will result in the lattice further away from 
the origin (than the pair) being translated either toward (if addition) or 
away (if subtraction) from the origin. The effect of this translation may be 
canceled on one of the lattices by a change in the number of particles pas- 
sing through the origin, but if this happens, the particles traveling in the 
other direction will be shifted from where they were previously, Therefore, 
at least one of the particle lattices (left- or right-going) will not be at the 
same position after t time steps. Since the spatial entropy is positive 
definite, there is a finite probability (independent of t) such that T'p' is in a 
different element of d than T'p (where p' is an element such that 
p'c~ [p]D,I\p4:0).  Since the elements of s~ consist of cylinder sets of 
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length 2t, the number of these perturbations grows linearly with t. Hence, 
for almost every p ~ sJ, nt, l(P) also grows linearly with t and the P-entropy 
is positive definite. 

The other perturbation can be ignored, since changing the color of a 
particle will only affect the configuration after t time steps if it is on the 
O(t) points on the color lattice that goes through the origin. 

8.4. The  1D G a m e  of  Life Is W e a k l y  T u r b u l e n t  

The 1D game of life is a 1D nearest neighbor CA with the following 
local rule: 

01 if a = c ,  
f (a ,b , c )=  if ar  a,b,c~{O, 1} (8.13) 

This is the 01-CA number 90. Topological dynamical aspects have been 
studied extensively by Martin et al. (491 Measure-theoretic aspects, which we 
are interested in, have been studied completely by Miyamoto (25) (and 
Kamae, cited in Ref. 25). He has shown that, in our terminology, the obser- 
vable invariant measure is unique and is the uniform measure v, so that it 
is a Gibbs random field. The stationary dynamics is isomorphic to the 
Bernoulli system B(1/2, 1/2). 

Here we show that the 1D game of life is weakly turbulent. Let As = 
{co:COo=e, CO~{0,1} z} and make a partition d = { A o ,  A1}. Then 
by(T, s~) > 0, since the system is K. Consider 

2 n -  1 

s~'2"-1 = V T - i d  (8.14) 
i 0 

Then for N =  2 n -  l, nN.l(v, sJ)=2" ~N,  Vp e ~'. Hence we have positive 
P-entropy. 

9. S U M M A R Y  

Using a caricature model of chemical turbulence, we have studied the 
infinite-lattice limit of cell dynamical systems. 

First we considered the infinite-lattice limit of cell dynamical systems 
and defined the observability of the asymptotic behavior. Our chemical 
turbulence model exhibits two different phases at intermediate strengths of 
coupling constant. One of them, which we labeled T, exhibits apparently 
random space-time patterns. We showed that the T-phase has a unique 
observable stationary state in which the spatial pattern is characterized by 
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a Gibbs random field. In this system macroscopic rules can be predicted 
from the microscopic rules. We believe that the T-phase is K, but not 
Bernoulli. 

To characterize the T-phase further, we considered the charac- 
terization of turbulent space-time patterns critically. We concluded that 
many candidates, such as the algorithmic complexity, are not sufficient to 
characterize turbulent patterns. We believe that the essence of turbulent 
space-time patterns lies in the "incompatibility" of the pattern-based par- 
tition and the dynamics-based partition. We proposed a tentative measure, 
which we called the P-entropy, to characterize this incompatibility and 
proposed a working definition of weak turbulence. We then showed that 
both the T-phase of the chemical turbulence model and the 1D game of life 
are weak-turbulent. 

A more detailed analysis of the above-mentioned incompatibility is 
desirable. We believe that dynamical theoretical analyses of simple CA 
should be conducted at least at the level of the present paper. So far only 
the 1D game of life has been analyzed completely. 

A P P E N D I X  A. C O N S T R U C T I O N  OF M E A S U R E - T H E O R E T I C  
CELL D Y N A M I C A L  S Y S T E M S  

Definit ion 1. Let A be a finite set, whose element is called a cell 
state, and a map f:  A 3 --, A, which defines a local rule of the CDS. A 1D, 
nearest neighbor, finite state CA on the finite lattice of length N (a positive 
integer) is a dynamical system (T, AN), where T:AN--*A N is an 
endomorphism of A N such that 

with 

T: (ao,..., aN_ l )  --* (a'o,..., a~_  l), ai, a; E A (A. 1 ) 

a ~ = f ( a i _ l ,  ai, ai+l),  O<~i<~n-1 ,  a N = a o ,  a l = a j v _ l  (A.2) 

The CA (T, A N) may also be specified as (f, A, N). An element of A u is 
called a configuration. 

D e f i n i t i o n  2. A 1D, nearest neighbor CA is a (topological) 
dynamical system (T, AZ),  where T: A z ~ A z is an endomorphism of A z 
such that 

r T{ai}+=~ = t , , i  . . . .  ai, a i ~ A  (A.3) 

with 

a ~ = f ( a i _ l ,  ai, ai+l), i ~ Z  (A.4) 
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D e f i n i t i o n  3. Let a, bEA N. We write 

a ~ b if and only if 3n E Z + such that T'a = b (A.5) 

The stationary state  Sa, N with the initial configuration a E A  N iS the 
following set: 

S, , , /= {b: a ~---~ b, b ~-, b, b e A  N} (A.6) 

that is, the periodic m-limit set that can be reached from initial 
configuration a. The cardinality of Sa, u is the period of the cyclic orbit 
{b, Tb, T2b,... }. 

D e f i n i t i o n  4. A local configuration (sometimes called a word) w in 
a configuration a E A u is a consecutive string of cell states appearing in a 
(i.e., a subword of a). We denote the length of the word w by IwJ. 

We can enumerate all the words on an infinite lattice according to 
their length and a prescribed lexicographic order in A. 

The cells on a finite periodic lattice of size N are labeled 
- [ ( N - 1 ) / 2 ] , . ,  0,..., IN/2],  where the zeroth cell specifies the position of 
the observer, and [.  ] is the Gauss symbol. (This should not cause any loss 
of generality, because the dynamics is translationally invariant.) 

D e f i n i t i o n  5. A local configuration around the observer is a local 
configuration occupying the cells, - [ ( n - 1 ) / 2 ] , . ,  0,..., In/2]. By [w] we 
denote the set of all the configurations containing w as a local con- 
figuration around the observer. We call [w] the cylinder set around the 
observer specified by the word w. 

Let Pa,N,n(W) be the relative frequency of configurations in [w] where 
w is a local configuration of length n around the observer, in the stationary 
state S,,N; that is, 

Pa,N,n(W) = # (I-w] (3 Sa ,N) /#  (Sa,N) (A.7) 

where # ( . )  denotes the cardinality of the set .. We set 

Pa,U,n(~N)-~-O (A.8) 

if [wl = n > N. We can define a probability vector whose components are 
given by Pa,u,,(w): 

Pa,s,n = (Pa,u,n(W,) ..... Pa,N,n(WM)) (A.9) 
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where wl,..., w M ~ A  ~, M =  #(A~),  and the words  wl,..., wM are ordered 
lexicographically. We have 

P.,N,n(b-c(,- 2)/21 ..... bo,..., bE(, 2)/2]) 

= ~ '  P~,x,n( b - [(,-1)/z],..., bo,..., b[,/2]) (A. 10) 

where the summat ion  Y~' is over  bE~/2 ] if n is even and b t,,-~/2] if n is odd. 
This follows f rom 

[b_un_2)/2],..., bo,..., b[(n_2)/213 = ~)' [b-E(,-~)/2?,..., bo,..., b~/2]] (A.11) 

where U'  is over  b~n/2~ if n is even and b_~(n_l)/2] if n is odd. 
Next,  we introduce the direct product  of P,,u.n w.r.t, n 

Pa, N ~ f I  Pa,N,n (A.12) 
n=0 

This is virtually a f inite-dimensional vector  for finite N due to (1.6). The  
P,.N contains all the spatial statistics of the s ta t ionary  state of the size-N 
lattice whose initial configurat ion is a e A N. 

To  take the N ~ oo limit, we must  change initial condit ions according 
to the size of the lattice. We specify a sequence of initial condit ions as 
follows. Let a E A z be 

�9 �9 �9 a _ h a  - - n  + 1 " " " a o a l  " " �9 a n  " " " 

where a i e A for all i E Z. For  each a, we make  an infinite sequence Na: 

P ~ (1.13) ~ a = {  [ a ] n , n } n : l  

where [a]~  is the local configurat ion a round  the observer  of length n, 
which is a word  in a. Then  we define the total i ty of N, w.r.t, the initial 
configurations:  

~ =  ~ 5~. (A.14) 
a~A Z 

is the total i ty of the sequence of statistical results for the s ta t ionary 
states of finite-size lattices compat ib le  with the initial configurat ion a for an 
infinite lattice�9 W h a t  we have done above  is to collect all the statistical da ta  
on the local configurations for larger and larger finite lattices. We expect 
that  the limit in some sense of these statistics gives us the statistical 
structure of  the infinite-lattice limit. More  precisely, we expect that  the 
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accumulation points in ~a are relevant to infinite lattices. To this end we 
must introduce a metric on N. 

We introduce a topology on the set 2~ through the following compact 
metric: 

IIPa,N-- Pb,MII ~- ~ 2 " IPa,N,n-- Pb,M,nl 
n = J  

(A.15) 

where J.J is the usual Euclidean metric, and P,,N, Pb, M ~ N. The metric is 
faithful to our fundamental viewpoint stated at the beginning of Section 4: 
the factor 2 -"  accounts for the relative importance of the local con- 
figurations close to observer. This factor can be the reciprocal of the nth 
power of any number larger than 1; any such factor gives the same 
topology. If IrP-QII = o, then all the empirical statistics must be identical 
for P and Q. However, this does not necessarily imply that P = Q, because 
these vectors are not finite-dimensional. However, the difference between P 
and Q is not interesting to the localized observer. Therefore, we make the 
topological space (~,  Jl" r]) complete by defining the identity ~ as 

P,~Q.*~I fP-QII=O,  VP, Q ~  (A.16) 

We henceforth identify, for convenience, N and 2~/~. 
The topological space (2~, It-ll) is sequentially compact. Hence, the set 

~,, which is an infinite set, must have an accumulation point for any 
a ~ A z. We have the following result. 

P r o p o s i t i o n .  Any accumulation point of ~. defines a T-invariant 
~-additive measure on A z. 

Proof. Any element of ~, for finite N, i.e., the vector P[a]N,N defined 
in (A.5), defines a probability measure #,,x on A N with the consistency 
condition 

p, ,N([W])= ~ /~a,N([W]) (A.17) 

where w' is a subword of w and the summation is over all symbols in w\w'. 
This immediately follows from (A.8). This property is inherited by the 
accumulation points, so any accumulation point of ~a defines a (r-additive 
probability measure due to the Kolmogorov existence theorem. By 
definition, for any N we have 

~.,~,(T-~[w]) = t,.,N([w]) (A.~S) 
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where T-1 is calculated within Sa, N. Hence, also the accumulation points 
must have this property, i.e., the measure defined above is T-invariant. II 

Let us denote the totality of accumulation points ~a by ~a and define 

2 =  ~ ~. (AA9) 
a e A  z 

Def in i t i on  6. A T-invariant measure # on A z defined by any 
probability vector P e ~ is called an invariant measure for the infinite 
lattice corresponding to P. 

There may be other invariant measures, which cannot be constructed 
as above, but since they are inaccessible empirically, we ignore them. ~ or 
~a can contain many accumulation points. Even for fixed initial condition, 
different accumulation points may be obtained, e.g., due to the even-odd 
property of the lattice size. 

Def in i t i on  7. Observable invariant measures are measures 
corresponding to vectors in ~ that can be reached from v-positive measure 
set fl c A z of initial conditions, where the measure v is given by 

v = 20 s (A.20) 

with )v being the Lebesgue measure on [0 ,1 ]  x [0 ,1 ]  and s : A Z ~  
[0, 1] x [0, 1 ] defined as 

s ( ' " a - m ' " a  l a~  30"a~ (A.21) 

where a,-e A for all i e Z. Here we have assigned consecutive nonnegative 
integers starting from zero to symbols in the set A and identify the 
resultant set of nonnegative integers with the original A. The map s is the 
one that gives, e.g., an isomorphism between a Bernoulli automorphism 
and the baker's transformation. (26) 
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